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ABSTRACT 
In this paper, we present performance analysis of two NASA 
applications using performance tools like Tuning and Analysis 
Utilities (TAU) and SGI MPInside. MITgcmUV and 
OVERFLOW are two production-quality applications used 
extensively by scientists and engineers at NASA. MITgcmUV is 
a global ocean simulation model, developed by the Estimating the 
Circulation and Climate of the Ocean (ECCO) Consortium, for 
solving the fluid equations of motion using the hydrostatic 
approximation. OVERFLOW is a general-purpose Navier-Stokes 
solver for computational fluid dynamics (CFD) problems. Using 
these tools, we analyze the MPI functions (MPI_Sendrecv, 
MPI_Bcast, MPI_Reduce, MPI_Allreduce, MPI_Barrier, etc.) 
with respect to message size of each rank, time consumed by 
each function, and how ranks communicate. MPI communication 
is further analyzed by studying the performance of MPI functions 
used in these two applications as a function of message size and 
number of cores. Finally, we present the compute time, 
communication time, and I/O time as a function of the number of 
cores. 

1. INTRODUCTION 
Developing or porting codes on new computing 
architectures to achieve good performance is a challenging 
and daunting task for application scientists and engineers. 
Performance of most of the real-world applications is less 
than 10% of the peak performance on these computing 
systems. Low performance is due to a number of 
challenges facing the high-performance scientific 
community, including increasing levels of parallelism 
(threads, multi- and many-cores, nodes), deeper and more 
complex memory hierarchies (register, multiple levels of 
cache, on node NUMA memory, disk, network), and 
hybrid hardware (processors and GPGPUs). In many cases, 
factors such as runtime variation due to system noise, 
traditional computer benchmarking is not sufficient to 
understand the performance of large-scale applications. In 
such cases, simple inspection of the profile (the timing 
breakdown) is not adequate to analyze performance of 

particularly MPI applications. One needs to know what is 
happening “inside” both the application and the MPI 
library and along with the interaction of the two. 

The present study uses two performance tools (SGI’s 
MPInside and TAU from University of Oregon) to profile 
two production-quality applications (OVERFLOW-2 and 
MITgcmUV, hereafter OVERFLOW-2 will be referred as 
OVERFLOW). This study also uses the low-level MPI 
function benchmarks to measure their performance as a 
function of message size. The study was carried out on an 
SGI Altix ICE 8200EX cluster, Pleiades, located at NASA 
Ames Research Center. Pleiades consists of two sub-
clusters: one part based uses the Xeon 5472 Harpertown 
processor [1–2] (hereafter called “Pleiades-HT”), and the 
second uses Xeon 5570 Nehalem processor, the first server 
implementation of a new 64-bit micro-architecture 
(henceforth called “Pleiades-NH”) [3-4].  All the nodes 
employ the Linux operating system and SGI MPT library 
and are connected in a hypercube topology using 
InfiniBand [5-6]. 

In this paper we have conducted the performance profiling 
of OVERFLOW and MITgcmUV using the two 
performance tools, MPInside and TAU, on Pleiades-HT 
and Pleiades-NH.  We have also evaluated and compared 
the performance of MPI functions as a function of message 
size on Pleiades-HT and Pleiades-NH. 
The remainder of this paper is organized as follows: 
Section 2 describes the two performance tools, SGI’s 
MPInside and TAU from University of Oregon, used in the 
study.  Section 3 gives the overview of the applications 
and MPI function benchmarks. Section 4 presents and 
analyzes results from running these benchmarks and 
applications on the two clusters. Section 5 contains a 
summary and conclusions of the study.   
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2. Performance Tools Used 
Based on an initial survey and looking into pros and cons 
of each performance tool, we decided to use two tools, 
MPInside and TAU, to conduct in-depth performance 
analysis of two real-world applications used extensively by 
scientists and engineers at NASA [7-22]. MPInside is a 
profiling and diagnostic tool developed by SGI to analyze 
and predict the performance of MPI applications [15]. 
Tuning and Analysis Utilities (TAU) developed by 
University of Oregon, and supported by ParaTools, Inc., is 
a portable profiling and tracing toolkit for performance 
analysis of parallel programs [14].  

3. Applications and Benchmarks 
3.1 Science and Engineering Applications 

For this study, we used two production applications, taken 
from NASA’s workload. OVERFLOW, developed at 
NASA’s Langley Research Center, is a general-purpose 
Navier-Stokes solver for CFD problems [23]. MITgcmUV, 
developed by the Estimating the Circulation and Climate 
of the Ocean (ECCO) Consortium, is a global ocean 
simulation model for solving the fluid equations of motion 
using the hydrostatic approximation [24]. 

3.2 Intel MPI Benchmarks (IMB) 

The performance of real-world applications that use MPI 
as the programming model depends significantly on the 
MPI library and the performance of various point-to-point 
and collective message exchange operations supported by 
the MPI implementations. Intel MPI Benchmarks (IMB), 
(formerly, the Pallas MPI Benchmarks) is a commonly 
used benchmark suite to evaluate and compare the 
performance of different MPI implementations [25].  
The MPI standard defines several collective operations, 
which can be broadly classified into three major categories 
based on the message exchange pattern: OnetoAll, 
AlltoOne, and Alltoall. We have evaluated the performance 
of MPI_Bcast, MPI_Reduce, MPI_Alltoall, and 
MPI_Allreduce collective operations on both clusters.  

4. Results 
In this section, we present the results of our study. 

4.1 Scientific and Engineering Applications 

4.1.1 MITgcmUV 
Figure 1 shows the sustained performance of MITgcmUV 
using TAU and MPInside.  

 
Figure 1: Sustained performance of MITgcmUV on Pleiades-HT 

Sustained performance of MITgcmUV is about 1.2–1.4% of 
the peak, which is relatively low, as most of the applications 
have sustained performance around 3–8% of peak. We have 
not looked into the cause of this low performance from 
processor and memory subsystem perspective here but have 
only investigated the role of various MPI functions for the 
application. 
In Figure 2, we show the percentage of time for total, 
compute, communication, and I/O times on Pleiades-HT and 
Pleiades-NH. As expected, percentage of compute time 
decreases and communication time increases for increasing 
numbers of cores for both systems.  Percentage contribution 
of I/O time increases for large number of cores. On 64 cores 
of Pleiades-NH compute is 93%, communication 3.5%, I/O 
3.5%.  Corresponding numbers for 480 cores are: compute 
59.1%, communication 23.4%, and I/O 17.5%.  

 
Figure 2: Time percentage of MITgcmUV using MPInside on two 
systems. 

Figure 3 shows the read, write, and (read+write) times for 
MITgcmUV on two systems. Read time is almost the same 
on both systems; however, write time on Pleiades-HT is 
much higher than on Pleiades-NH—it writes 8 GB of data. 
This is due to the fact that Pleiades-NH has three times 
more memory than Pleiades-HT so one is measuring writes 
to buffer cache in memory. On the other hand, on Pleiades-
HT one is measuring “write time” to disk because there is 
not enough memory to hold all 8 GBs of output data. 



 3 

 
Figure 3: I/O times for MITgcmUV using MPInside on two systems. 

In Figure 4, we plot the write bandwidth on the two 
systems. Write bandwidth on Pleiades-NH is about 55% 
higher than on Pleiades-HT. As mentioned in the previous 
paragraph, this is due to the fact that there is three times 
more memory per core in Pleiades-NH than Pleiades-HT—
write is done using the memory buffer as opposed to disk 
write in Pleiades-HT.  

 
Figure 4: Write bandwidth of MITgcmUV on two systems. 

In Figure 5, we plot the percentage of time spent in each of 
the MPI functions in MITgcmUV. Percentage of 
communication time spent is 60, 30, and 5% in MPI_Recv, 
MPI_Allreduce, and MPI_Waitall, respectively. Only 5% 
of the time is spent in MPI_Send, MPI_Isend, MPI_Bcast, 
and MPI_Barrier.  
 

 
Figure 5: Percentage of time spent in MPI functions for MITgcmUV. 
 
In Figure 6, we plot the minimum, average, and maximum 
message size of MPI_Recv in MITgcmUV using 
MPInside. The average message size varies from 3–9 KB.  
 

 
Figure 6: Message size of MPI_Recv in MITgcmUV using MPInside. 

With both the tools the message size in MPI_Allreduce is 8 
bytes for cores ranging from 60 to 480. Since data size is 
only 8 bytes, MPI_Allreduce is network latency-bound in 
MITgcmUV. A message size of 225 KB is broadcast to all 
cores. Message sizes for all MPI functions in MITgcmUV 
including MPI_Recv, MPI_Allreduce, and MPI_Bcast 
were the same, as measured by TAU and MPInside. 

4.1.2 OVERFLOW 
In this subsection, we present results for OVERFLOW 
using the performance tools MPInside and TAU.  Only the 
results obtained using MPInside are shown, as they are 
same as those obtained by using TAU. 
Figure 7 shows the sustained performance of 
OVERFLOW. Sustained performance is about 2.5% of 
peak. Performance of OVERFLOW is slightly better than 
MITgcmUV. We notice that even for 16 cores (2 nodes), 
performance is low. We did not investigate the cause of 
this low sustained performance but believe it is related to 
processor and memory subsystem. 

 
Figure 7: Sustained performance of OVERFOW. 
Figure 8 shows the percentage of computation, 
communication, I/O, and total time on both systems. On 
both systems, percentage of computation time decreases as 
the number of cores increase from 32 to 128 and then 
increases for 256 cores. In addition, percentage of 
communication time increases as the number of cores 
increases from 32 to 128, and then decreases for 256 cores. 
For 256 cores on Pleiades-HT: computation 62%, 
communication 25%, and I/O 13%; Pleiades-NH: 
computation 52%, communication 33%, and I/O 15 %.  
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Figure 8: Percentage of computation, communication, I/O, and total time 
in OVERFLOW using MPInside. 
Figure 9 shows the I/O time for OVERFLOW on the two 

 
Figure 9: I/O time in OVERFLOW for Pleiades-HT and Pleiades-NH. 
systems. I/O times are better on Pleiades-NH than on 
Pleiades-HT. Performance of (read+write) is better on 
Pleiades-NH than Pleiades-HT by a factor of 1.4 for all 
core counts except at 128 cores where it is a factor of 1.7. 
Figure 10 shows the read and write bandwidth in 
OVERFLOW for the two systems. Size of input data file 
read is 1.6 GB, and size of the solution file written is 2 
GB. Both read and write bandwidths are higher on 
Pleiades-NH than on Pleiades-HT. The reason for this is 
that memory per node is three times higher on Pleiades-
NH than on Pleiades-HT (24 vs. 8 GB), so size of memory 
buffers is higher in the former. Performance of the write 
bandwidth in OVERFLOW is almost the same as in 
MITgcmUV, although data written is four times larger in 
MITgcmUV (2 vs. 8 GB). 

 
Figure 10: Read and write bandwidth in OVERFLOW for two systems. 

In Figure 11, we show times for the top five MPI 
functions. Most of the time is consumed by the two 
functions MPI_Waitall and MPI_Gatherv, followed by 
MPI_Recv and MPI_Send and the lowest time by 
MPI_Bacst. For 128–256 cores, time for MPI_Waitall and 
MPI_GatherV decreases, whereas time for MPI_Recv, 
MPI_Send, and MPI_Bcast remains almost constant.  

 
Figure 11: Timings for the top 5 MPI functions in OVERFLOW. 
Figure 12 shows percentage time for the top 5 MPI 
functions. Percentage of time taken by MPI_Recv and 
MPI_Send increases as the number of cores increases. Up 
to 64 cores, percentage of time taken by MPI_Send is more 
than MPI_Recv and then it becomes the same for 128 and 
256 cores. For higher numbers of cores, percentage time 
consumed by all MPI functions increases, except for 
MPI_GatherV. At 256 cores, percentage of time consumed 
by MPI_Waitall is the highest. The function MPI_Waitall 
waits for all communications to complete. At 256 cores, 
percentage of time contributions are MPI_Waitall 36%, 
MPI_GatherV 21%, MPI_Recv 17%, MPI_Send 17%, and 
MPI_Bcast 9%.  

 
Figure 12: Percentage time for the top 5 MPI functions in OVERFLOW 
using MPInside. 
Figure 13 shows the minimum, average, and maximum 
message size of MPI_Send in the OVERFLOW 
application. Message size decreases as the number of cores 
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increases. The average message size for MPI_Send is 348, 
129, 80, and 54 KB for 16, 128, 256, and 512 cores, 
respectively. 

 
Figure 13: Message size for the MPI_Send function in OVERFLOW 
using MPInside. 

Figure 14 shows the minimum, average, and maximum 
message size for MPI_Recv. For all three cases, size first 
increases up to 32/64 cores, and then decreases up to 512 
cores. Average message size for MPI_Recv is 53, 104, 144, 
and 219 KB for 16, 128, 256, and 512 cores respectively.  

 
Figure 14: Message size for the MPI_Recv function in OVERFLOW 
using MPInside. 

Figure 15 shows the message size for MPI_Bcast. Message 
size for MPI_Bcast is 1.29 MB in the OVERFLOW 
application from 16 to 512 cores.  

 
Figure 15: Message size for the MPI_Bcast function in OVERFOW using 
MPInside. 

Figure 16 shows the minimum, average, and maximum 
message size for MPI_Gatherv. Average size of the 
message gathered by MPI_Gatherv is 270 bytes for 16 to 
512 cores. Since the size of the message is very small, 
performance of MPI_Gatherv depends on network latency 
and not on network bandwidth. 

 
Figure 16: Message size for the MPI_Gatherv function in OVERFLOW 
using MPInside. 

4.2 Intel MPI Benchmarks (IMB) 

In this section, we describe the performance of various 
MPI functions relevant to the two applications 
(MITgcmUV and OVERFLOW) used in this paper.  

4.2.1 MPI_Sendrecv & MPI_Exchange 
In Figure 17, we plot the performance of the 
MPI_Sendrecv and MPI_Exchange benchmarks for small 
messages on both systems. This plot provides insights into 
the relationship between the message exchange pattern, 
point-to-point message exchange algorithms, and overall 
performance. On both systems, performance of the 
MPI_Sendrecv benchmark is better than MPI_Exchange. 
In the MPI_Exchange benchmark, each process exchanges 
messages with both its left and right neighbors 
simultaneously, whereas in the MPI_Sendrecv benchmark, 
each process receives from its left neighbor and sends to 
its right neighbor at any instant. Since the MPI_Sendrecv 
benchmark involves a lesser volume of messages 
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exchanged in comparison with MPI_Exchange, it is natural 
to expect better throughput. We see a change in slope for 
both benchmarks on the two systems around a message 
size of 1 KB, which is due to a change of algorithm. 

 
Figure 17: Performance of the MPI_Sendrecv and MPI_Exchange 
functions on two systems for small messages. 

In Figure 18, we plot the performance of the 
MPI_Sendrecv and MPI_Exchange benchmarks for large 
messages on both systems. We see a peak bandwidth with 
a 16 KB message (3.6 GB/s for Pleiades-NH vs. 2.6 GB/s 
for Pleiades-HT), which falls drastically for larger 
messages and stabilizes at 2.3 GB/s for Pleiades-NH and 
2.9 GB/s for Pleiades-HT. We believe this could be due to 
cache effects as large message intra-node exchanges 
usually involve making a copy from the user buffer to the 
shared-memory buffers. As size of the data in the user 
buffer grows, we may not be able to fit it in the cache, 
leading to cache misses. 
 

 
Figure 18: Performance of the MPI_Sendrecv and MPI_Exchange 
functions on two systems for large messages. 

Figure 19 shows the bandwidth of the MPI_Sendrecv 
benchmark for a message size of 262 KB, which is the 
average size used in MITgcmUV for the cores ranging 
from 2 to 512. Bandwidth within a node (8 cores) is higher 
on Pleiades-NH than on Pleiades-HT as the former uses 
faster intra-node communication via QPI. Beyond 8 cores 
(a node), the bandwidth on both systems is almost same 
except at 512 cores where Pleiades-NH has higher 
bandwidth.  

 
Figure 19: Performance of the MPI_Sendrecv function on two systems for 
a message size of 262 KB. 

4.2.2 MPI_Bcast 
Figure 20 shows the performance of MPI_Bcast for small 
messages on the two systems. Up to a 1 KB message size, 
performance on both systems is almost the same. 
However, beyond that we notice there is a drastic change 
of slope on both systems due to transition of algorithms 
used in its implementation. In addition, performance is 
better on Pleiades-NH than on Pleiades-HT. 

 
Figure 20: Performance of MPI_Bcast on two systems for small 
messages. 

Figure 21 shows the performance of MPI_Bcast for large 
messages on the two systems. Performance difference 
between the two systems is small for 16 to 64 KB, and 
then the performance gap increases as the message size 
increases. Timings are (a) 64 KB: 289 vs. 481 µs, and (b) 1 
MB: 5,398 vs. 8,038 µs on two systems. 
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Figure 21: Performance of MPI_Bcast on two systems for large messages. 

Figure 22 shows the performance of MPI_Bcast for a 1 
MB message size used in OVERFLOW. We see that 
performance on Pleiades-NH is higher than Pleiades-HT 
for both intra- and inter-node communication.  

 
Figure 22: Performance of MPI_Bcast on two systems for a 1 MB 
message. 

4.2.3 MPI_Allreduce 
In Figure 23, we plot average time for the MPI_Allreduce 
benchmark for small messages for both systems. Up to 64 
bytes, performance is higher on Pleiades-HT and then from 
128 bytes to 1 KB, performance is the same. From 2 KB 
onwards, the performance gap continues to widen and at 8 
KB, it is 40% higher (151 vs. 211 µs). 

 
Figure 23: Performance of MPI_Allreduce on two systems for small 
messages. 

In Figure 24, we plot the average time for the 
MPI_Allreduce benchmark for large messages for both 
systems. Throughout all cores, performance on Pleiades-
NH is higher than on Pleiades-HT, and the performance 
gap increases as the number of cores increases. At 16 KB, 
times are 261 and 392 µs, and at 1 MB, they are 7,958 and 
10,897 µs for Pleiades-NH and Pleiades-HT, respectively.  

 
Figure 24: Performance of MPI_Allreduce on two systems for small 
messages. 

Figure 25 shows the performance of MPI_Allreduce on 
two systems for a message size of 8 bytes used in 
MITgcmUV.  On both systems up to 64 cores, 
performance of MPI_Allreduce is same and degrades 
slowly as the number of cores increase. It may be recalled 
that in MITgcmUV the average size of message broadcast 
is 8 bytes. Since the message size is very small the 
performance of MPI_Allreduce in MITgcmUV depends on 
the network latency of the system.  Network latency of 
both systems increases with increasing number of cores 
especially beyond 128 cores (1 IRU) and therefore 
degrades rapidly.  

 
Figure 25: Performance of MPI_Allreduce on two systems for an 8-byte 
message.  

4.2.4 MPI_Gatherv 
Figure 26 shows the performance of MPI_Gatherv on two 
systems for small messages. Up to a message size 4 KB, 
performance of Pleiades-HT is much better than Pleiades-
NH, however for 8 KB message performance of Pleiades-
NH is better. The reason for this is the change in algorithm 
for the implementation of MPI_Gatherv on MPT. 
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Figure 26: Performance of MPI_Gatherv on two systems for small 
messages. 

Figure 27 shows the performance of MPI_Gatherv on two 
systems for large messages. Up to 64 KB, performance of 
Pleiades-HT is better than Pleiades-NH, however for 128 
KB to 1 MB performance of Pleiades-NH is better.  

 
Figure 27: Performance of MPI_Gatherv on two systems for large 
messages. 

Figure 28 shows the performance of MPI_Gatherv on two 
systems for a message 262 KB. It is worth mentioning that 
average message in MPI_Gatherv is 270 KB.  Within a 
node (8 cores), performance of Pleiades-NH is better than 
Pleiades-HT—the former’s inter-socket communication is 
faster due to QPI. Performance of both systems is same for 
16 to 64 cores. Beyond 64 cores, performance of Pleiades-
NH is better than Pleiades-HT. 

 
Figure 28: Performance of MPI_Gatherv on two systems for a 262 KB 
message. 

5. Summary and Conclusions 
In this paper, we study the performance of two NASA 
applications using two different analysis tools, TAU from 
University of Oregon and SGI’s MPInside. We focus 
particularly on the communication times analyzing the 

performance of various MPI functions used in these 
applications. One of the most interesting results reached by 
our analysis is that relatively few functions in the MPI 
library are used in the MITgcmUV and OVERFLOW 
applications. The other conclusion is that write data 
(solution file) is relatively small, namely 2 GB and 8 GB 
for OVERFLOW and MITgcmUV, respectively, and is 
performed sequentially.  

There was wide variation in message lengths—the shortest 
is 8-byte messages in MPI_Allreduce in MITgcmUV, and 
the largest message length is 1.3 MB for MPI_Bcast in 
OVERFLOW. Message length for MPI_Gatherv and 
MPI_Recv used in OVERFLOW is 270 bytes and 100 KB, 
respectively. Average message length for MPI_Recv and 
MPI_Bcast used in MITgcmUV is 6 KB (actually 3 to 9 
KB) and 225 KB. Overall, the conclusion that can be 
drawn is that inter-core communication for hardware and 
software must be optimized for both short and long 
messages. This paper shows that a large percentage of 
messages, for these applications, are not extremely long. 

We used two different tools for analyzing the performance 
of the MPI benchmarks and the two applications: SGI’s 
MPInside and TAU from University of Oregon. TAU has 
more extensive, sophisticated features and a nice visual 
interface. However, it does have a steep learning curve and 
to use it effectively, it is helpful to have support and 
training. On the other hand, MPInside is easy to use for the 
basic MPI functions but needs experience and training for 
collectives. Also, MPInside needs a better user interface 
and more features such as support to calculate the average 
message sizes. 
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